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ABSTRACT
Sequential recommender systems often suffer from performance

drops due to the data-sparsity issue in real-world scenarios. To

address this issue, we bravely take advantage of the strength in

diffusion model to conduct data augmentation for sequential rec-

ommendation in this paper. However, there remain two critical

challenges for this scarcely-explored topic: (i) previous diffusion

models are mostly designed for image generation aiming to capture

pixel patterns, which can hardly be applied in data augmentation

for sequential recommendation aiming to capture the user-item

relations; (ii) given a specific diffusion model capable of user-item

interaction augmentation, it is non-trivial to guarantee that the

diffusion-generated data can always bring benefits towards the

sequential recommendation model. To tackle these challenges, we

propose Diff4Rec, a curriculum-scheduled diffusion augmentation

framework for sequential recommendation. Specifically, a diffusion

model is pre-trained on recommendation data via corrupting and

reconstructing the user-item interactions in the latent space, and

the generated predictions are leveraged to produce diversified aug-

mentations for the sparse user-item interactions. Subsequently, a

curriculum scheduling strategy is designed to progressively feed

the diffusion-generated samples into the sequential recommenders,

with respect to two levels, i.e., interaction augmentation and objec-
tive augmentation, to jointly optimize the data and model. Extensive

experiments demonstrate that our proposed Diff4Rec framework is

able to effectively achieve superior performance over several strong

baselines, capable of making high-quality and robust sequential rec-

ommendations.We believe the proposed Diff4Rec has the promising

potential to bring paradigm shift in multimedia recommendation.
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1 INTRODUCTION
In real-world online web services, sequential actions are pivotal

to recommender systems, including activities such as browsing

products, clicking links, making comments and favoring music etc.

Consequently, there has been a surge of interest in sequential recom-

mendation, which seeks to anticipate the subsequent user behaviors

based on sequential user interactions with items. Conventional se-

quential recommendation models have tried to leverage Markov

Chain to model temporal interaction transitions [9, 30, 40]. With

the advancement of deep learning, recent studies have made re-

markable strides in deep sequential recommendation models, which

employ various neural networks as sequence encoders to capture

dynamic patterns of user behaviors [11, 12, 15, 20, 21, 35, 36].

Nevertheless, sequential recommenders may suffer from perfor-

mance drop due to the data-sparsity issue in real-world scenar-

ios [9, 19, 25]. Previous works utilize various strategies such as

contrastive learning [39, 44], meta learning [5], disentangled repre-

sentation learning [26], etc. to mitigate the sparsity issue. Among

these methods, data augmentation is known as the most direct

and effective way to tackle the data-sparsity issue [2, 8, 43, 46].

Therefore, in this paper, we bravely propose to take advantage of

the strength within the advanced diffusion models for user-item

interactions augmentation, which is expected to improve sequen-

tial recommendation performance. However, this topic is scarcely

explored in the literature and poses the following two challenges:

(1) Existing diffusion models are mostly designed for image gen-

eration which aims to capture visual pixel patterns, failing to
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conduct data augmentation for sequential recommendation.

It is non-trivial to incorporate the learning ability of diffu-

sion models into the recommendation domain and generate

reliable interactions aligned with user intents.

(2) Given a particular diffusion model for user-item interaction

augmentation, it is non-trivial to ensure that the data gener-

ated through diffusion process can always benefit sequential

recommendation.

To tackle these challenges, we proposeDiff4Rec, a novel curriculum-

scheduled diffusion augmentation framework which is able to gen-

erate user-item interactive data for augmentation in sequential

recommenders. In particular, a diffusion model tailored for recom-

mendation is designed to gradually corrupt and recover user-item

interactions, which are encoded into a latent space to compress com-

plex information and capture latent user intents. The augmented

samples generated by the pre-trained diffusion model are then eval-

uated via a curriculum learning scheduler to be progressively fed

into the sequential recommender. The augmentations are conducted

in terms of two levels, i.e., Interaction Augmentation and Objective
Augmentation, to effectively utilize the diffusion-generated samples.

Interaction Augmentation uses the generated samples to enrich the

historical sequences and reveal diversified and undiscovered user

intentions, while Objective Augmentation leverages the generated

samples to serve as candidate items for an augmented training ob-

jective, thus resulting in better parameter optimizations and model

performances. Additionally, an easy-to-hard curriculum training

strategy is proposed to alleviate the potential noises hidden in the

diffusion-generated samples. Experiments demonstrate the superi-

ority of our proposed Diff4Rec framework.

To summarize, this work makes the following contributions.

• We propose to study the feasibility of leveraging diffusion

models to achieve user-item interactive data augmentation

for sequential recommendation.

• We propose the curriculum-scheduled diffusion augmenta-

tion framework Diff4Rec, consisting of i) a diffusion model

capable ofmodeling user-item interactions in the latent space

and ii) a curriculum scheduler which progressively augments

user-item interactive sequences with diffusion-generated

samples from interaction augmentation and objective aug-
mentation levels.

• We conduct extensive experiments on several real-world

datasets to demonstrate the superiority of the proposed

Diff4Rec, which discovers that it is promising to employ

diffusion models to facilitate the performance improvement

of sequential recommendation, especially for mitigating the

data-sparsity problem.

2 RELATEDWORK
Sequential Recommendation. Sequential recommendation sug-

gests items to users based on their previous interactions such

as purchases, clicks, or ratings. Deep neural networks, such as

GRU [12], CNN [36], and other variants, were utilized to demon-

strate a high level of efficacy in accomplishing sequential recom-

mendation. Moreover, some researchers used self-attention mech-

anisms to model the mutual influence between past interactions

and achieved impressive improvements in performance [15, 35, 47].

Graph neural networks are also effective at incorporating high-

order relationships in a sequence by propagating and aggregating

information, and have been applied to sequential recommendation

as well [7, 20]. Alternatively, recent research in sequential recom-

mendation has begun to investigate different training strategies. For

example, BERT4Rec [35] employs a Cloze objective that predicts

masked items in a sequence based on their context. Ma et al.[26]

propose a seq2seq training strategy based on disentanglement that

predicts the future sequence rather than the next item.

Diffusion Model. Diffusion models [13, 33, 34] essentially learns a

step-wise generator that maps Gaussian distribution to data samples

in a denoising manner. For its impressive generation ability, diffu-

sion model has been widely explored in computer vision [23, 28, 31,

32], audio processing [3, 17, 27] and AI for science [14, 24, 45]. Re-

cently, some effors have been attempted to employ diffusion model

to recommendation [38, 41]. However, these attempts either suffer

from poor performance or fail to leverage the data generation ability

of diffusion models to enhance the sequential recommendation.

Curriculum Learning. Curriculum learning is a dynamic sam-

ple reweighting learning strategy that usually starts with simple

patterns and gradually advances to more complex ones, mirroring

how humans learn through a structured curriculum [42]. Bengio et

al. [1] investigated curriculum learning and demonstrated through

empirical studies that such an approach can reduce training time

and sometimes even improve generalization. The main compo-

nents of curriculum learning include a difficulty metric to identify

easy data and a training scheduler to determine when to introduce

more challenging data for training. Chen et al. [4] explore easy-to-

hard curriculum learning on a meta-learning paradigm to transfer

the knowledge from multiple citiesto cold-start cities for next POI

recommendation. Bian et al. [2] follow the evaluate-and-schedule

process and develop a curriculum learning strategy to conduct

contrastive learning for modeling sequential user behaviors.

3 DIFF4REC: THE PROPOSED FRAMEWORK
The overall Diff4Rec framework is shown in Figure 1, where we

initially utilize a latent diffusion model to predict user-item in-

teractions in a denoising manner. Afterward, with the predictions

generated by the pre-trained diffusion model, we augment the inter-

action sequences to enhance sample diversity and feed the samples

into downstream sequential recommenders optimized with cur-

riculum learning strategy. In this section, we will first describe the

preliminaries, then the diffusion training for recommendation, and

finally the curriculum scheduler.

3.1 Preliminaries and Notations
3.1.1 Diffusion Model. A diffusion model typically involves for-

ward and reverse processes. To begin, a data point that has been

sampled from a real-world data distribution z0 ∼ 𝑞(z) is sub-

jected to the forward process, which gradually corrupts z0 into

a standard Gaussian noise z𝑇 ∼ N(0, I). Throughout each for-

ward step 𝑡 ∈ [1, 2, ..., 𝑇 ], the perturbation is modulated by

𝑞(z𝑡 |z𝑡−1) = N(z𝑡 ;
√︁

1 − 𝛽𝑡 z𝑡−1, 𝛽𝑡 I), where 𝛽𝑡 ∈ (0, 1) represents
different variance scales. In the reverse phase, the denoising process

is initiated, which aims to gradually reconstruct the original data

z0 by sampling from z𝑇 and a neural network parameterized by 𝜃 .
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Figure 1: The overall structure of our proposed Diff4Rec framework. We adopt a two-stage paradigm to firstly train a diffusion
model on recommendation data, and then learn the sequential recommender through curriculum-scheduling strategy, where
the interaction augmentation and objective augmentation enrich sparse interactions and implement improved optimizations.

3.1.2 Sequential Recommendation. LetU and I denote the user

and item set, respectively. For each user 𝑢 ∈ U, a sequentially

ordered interaction sequence 𝑆𝑁 = [𝑖1, 𝑖2, ..., 𝑖𝑁 ] is provided,
where each element 𝑖 𝑗 ∈ I is an item that was interacted, and 𝑁 is

the length of the sequence. The goal of sequential recommendation

is to predict a list of items that the user may be interested in, based

on its historical sequence 𝑆𝑁 leading up to the target time step 𝑁 .

3.2 Diffusion Training
The diffusion training process aims to obtain a diffusion model that

can generate user-item interactions for sequential recommendation,

which includes the interaction encoding, diffusion forward, and

reverse processes. Next, we describe the three processes in detail.

3.2.1 Interaction Encoding. To lower the computational demands

of training diffusion models towards interaction modeling, we pro-

pose to utilize a variational autoencoder (VAE) [16] to compress

the user-item interactions into latent space whilst making use of

the sparse signals to capture the latent intentions and preferences

of user behaviors [22, 25]. Given the user setU and item set I, we
denote 𝑥 ∈ R |U |× |I | as the interaction history matrix of users and

items, where 𝑥𝑢,𝑖 represents whether user 𝑢 has interacted with

item 𝑖 or not. Specifically, a variational encoder E is utilized to

encode user interactions 𝑥 into a low-dimensional representation

z, such that

𝑞𝜙 (z|𝑥) = N
(
z; 𝜇𝜙 (𝑥), 𝜎2

𝜙
(𝑥)I

)
, (1)

where 𝜇𝜙 (𝑥) and 𝜎2

𝜃
(𝑥)I are the mean and variance of the varia-

tional distribution, and vector z will be delivered to the subsequent

diffusion model. Correspondingly, given the recovered ẑ from the

diffusion model, a decoder D is utilized to reconstruct user interac-

tions from the latent vector ẑ as 𝑝𝜓 (𝑥 |ẑ).

Generally, the set of VAE could be optimized by maximizing the

variational evidence lower bound (ELBO) [16],

L(𝜓,𝜙 ;𝑥, z) = −𝐷𝐾𝐿
(
𝑞𝜙 (z |𝑥 ) ∥𝑝𝜓 (z)

)
+ E𝑞𝜙 (z|𝑥 )

[
log𝑝𝜓 (𝑥 |z)

]
. (2)

With the variational autoencoder consisting of E andD, we can

efficiently access a low-dimensional latent space in which complex

user-item interactions are projected into latent vectors. Compared

to the high-dimensional interaction data space, the latent space

is more appropriate for likelihood-based generative models [31],

which enables the neural networks to identify the significant fea-

tures hidden in the interaction data and perform training in a com-

putationally feasible space.

3.2.2 Forward Process. The forward process gradually corrupts

the user interaction vector by adding Gaussian noises, where the

transition is parameterized by:

𝑞(z𝑡 |z𝑡−1) = N
(
z𝑡 ;

√︁
1 − 𝛽𝑡 z𝑡−1, 𝛽𝑡 I

)
, (3)

where 𝛽 stands for a variance schedule, i.e., the scale of Gaussian

noise added at each step 𝑡 ∈ {1, ...,𝑇 }. To begin with, we denote the

initial state of forward process as 𝑧0. With the constructed forward

process 𝑞, we can sample z𝑡 at any arbitrary noise level conditioned
on z0, given the following formulation:

𝑞(z𝑡 |z0) = N
(
z𝑡 ;
√
𝛼𝑡 z0, (1 − 𝛼𝑡 )I

)
, (4)

where 𝛼𝑡 =: 1 − 𝛽𝑡 and 𝛼𝑡 =: Π𝑡
𝑠=1
𝛼𝑠 . Thus, z𝑡 can be directly

sampled with the reparameterization trick [33] within the forward

process.

3.2.3 Reverse Process. The reverse process aims to denoise the

currupted z𝑡 and reconstruct the original interaction vector z0,

which is parametrized as:

𝑝𝜃 (z𝑡−1 |z𝑡 , z0) = N (z𝑡−1; 𝜇𝜃 (z𝑡 , 𝑡),Σ𝜃 (z𝑡 , 𝑡)) , (5)
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where the mean and variance are Gaussian parameters conditioned

on the time step 𝑡 , and can be learned through a neural network

parameterized by 𝜃 .

At each time step 𝑡 , the neural network can be interpreted as an

equally weighted sequence of denoising autoencoders 𝜖𝜃 (z𝑡 , 𝑡); 𝑡 =
1...𝑇 , which are trained to predict a denoised variant of their input

z𝑡 . In practice, training equivalently consists of minimizing the

variational upper bound on the negative log likelihood as:

E [− log 𝑝𝜃 (z0)] ≤ E𝑞
[
− log

𝑝𝜃 (z0:𝑇 )
𝑞(z1:𝑇 |z0)

]
=: L𝑣𝑙𝑏 , (6)

whereL𝑣𝑙𝑏 can be rewritten in terms of reconstructing log-likelihood

and KL divergences during each time step 𝑡 , which nearly leads

to L𝑣𝑙𝑏 being tractable KL divergences between Gaussian distri-

butions. Following the previous work by Ho et al. [13], we simply

optimize the noise prediction loss as follows:

L(𝜃 ) = E𝑡,z0,𝜖

[
∥𝜖 − 𝜖𝜃 (

√
𝛼𝑡 z0 +

√
1 − 𝛼𝑡𝜖, 𝑡)∥2

]
, (7)

where 𝜖 is sampled from a standard Gaussian for adding the noise

and 𝜖𝜃 is an approximator to predict 𝜖 . In this way, 𝜃 is optimized

to iteratively recover z𝑡−1 from z𝑡 . Finally, the overall objective of
the diffusion model can be formulated as follows:

L𝑡 (𝜓, 𝜙, 𝜃 ) = − 𝐷𝐾𝐿
(
𝑞𝜙 (z|𝑥)∥𝑝𝜓 (z)

)
+ E𝑞𝜙 (z |𝑥 )

[
log𝑝𝜓 (𝑥 |z)

]
+ 𝜆E𝑡,z0,𝜖

[
∥𝜖 − 𝜖𝜃 (

√
𝛼𝑡 z0 +

√
1 − 𝛼𝑡𝜖, 𝑡)∥2

]
, (8)

where 𝜆 is a hyperparameter that controls the scale of two loss

terms.

3.3 Diffusion Inference
At the inference phase, z0 will be obtained through encoder E
without variance, such that z0 = 𝜇𝜙 (𝑥). Then the low-dimensional

vector 𝑧0 will be corrupted with the forward process and recon-

structed with the reverse process, and we obtain the reconstructed

𝑧0. Finally, by feeding the reconstructed ẑ0 into the decoder D, we

will obtain the augmented user-item interaction matrix 𝑥 .

Discussion. Different from the image diffusion models which are

conducted in the pixel level, our proposed diffusion training is con-

ducted in the latent space of user interactions, thus being suitable

for recommendation. With the augmented interactions 𝑥 via diffu-

sion, the next problem becomes effectively utilizing the augmented

data to benefit the downstream sequential recommendation. To

tackle the problem, we then propose the curriculum scheduler.

3.4 Curriculum Scheduler
Considering that the augmented user-item interactions can play

important roles in both the sequential modeling and the parameter

optimization, we propose the two-level curriculum augmentation

scheduler to effectively utilize the generated samples. To alleviate

the impact of the potential noises hidden in the generated samples,

we design an easy-to-hard curriculum training strategy.

3.4.1 Level-I: Interaction Augmentation. Primarily, the diffusion-

generated samples can enrich the historical sequences, which con-

tributes to reveal users’ diversified and undiscovered intents. For

the 𝑢𝑡ℎ user’s historical sequence 𝑆𝑢 = [𝑖1, 𝑖2, · · · , 𝑖𝑁 ] with length

𝑁 , we use the diffusion-generated matrix 𝑥 to augment the user’s

historical sequence into 𝐾 (typically 10) new historical sequences.

Specifically, we first fetch all the generated behaviors of the𝑢𝑡ℎ user

𝑥𝑢 , and then randomly replace items in 𝑆𝑢 with sampled items from

𝑥𝑢 at a certain 𝑟𝑎𝑡𝑖𝑜 . Finally, we reorder the replaced sequence ran-

domly to obtain the resulting augmented sequence. This augmented

process is conducted 𝐾 times so that we can obtain 𝐾 augmented

sequences {𝑆 ′𝑢,𝑟 }𝐾𝑟=1
, where each 𝑆 ′𝑢,𝑟 is a sequence with length 𝑁 ,

i.e., 𝑆 ′𝑢,𝑟 = [𝑖′1,𝑟 , 𝑖
′
2,𝑟
, · · · , 𝑖′

𝑁,𝑟
].

3.4.2 Level-II: Objective Augmentation. The augmented sequences

can then be used to train the sequential recommendation model,

where it is possible to choose any sequence encoder for recom-

mendation as the backbone. Take SASRec [15] as an example, the

original training objective will be the next prediction loss:

L𝑜𝑟𝑖𝑔𝑖𝑛 =

𝑁∑︁
𝑗=1

𝑙𝑜𝑔(𝑝 (𝑖 𝑗+1 |𝑖1, · · · , 𝑖 𝑗 )), (9)

where the strategy is using previous behaviors to predict future

behaviors.With the diffusion-augmented sequences, the augmented

objective can be written as follows:

L𝑎𝑢𝑔 = L𝑜𝑟𝑖𝑔𝑖𝑛 +
𝐾∑︁
𝑟=1

𝑁∑︁
𝑗=1

𝑙𝑜𝑔(𝑝 (𝑖′𝑗+1,𝑟 |𝑖
′
1,𝑟 , · · · , 𝑖

′
𝑗,𝑟 )), (10)

where we additionally add the losses of next behavior prediction

based on the augmented sequences to enrich the original objective.

3.4.3 Curriculum Scheduling. The augmented sequences {𝑆 ′𝑢,𝑟 }𝐾𝑟=1

may contain noisy samples which fail to reflect the user’s true in-

tentions and may even do harm to capturing the user’s intentions.

We therefore design a curriculum scheduling strategy, whose key

function is to denoise [42] with the easy-to-hard paradigm. Specifi-

cally, we use the similarity between the augmented sequence and

the original sequence to evaluate the difficulty of each augmented

sequence as follows,

Sim𝑢,𝑟 = 𝑐𝑜𝑠 (𝑆𝑢 , 𝑆′𝑢,𝑟 ), (11)

where 𝑐𝑜𝑠 (·, ·) indicates the cosine similarity. More specifically, we

first obtain all the item embeddings in sequences 𝑆𝑢 and 𝑆
′
𝑢,𝑟 , and the

cosine similarity 𝑐𝑜𝑠 (𝑆𝑢 , 𝑆′𝑢,𝑟 ) is then calculated using the average

values of embeddings belonging to each of the two sequences, which

guarantees the insensitivity to the inner order of a sequence. Higher

similarity implies lower difficulty. We first employ sequences with

lower difficulties to optimize the model, gradually selecting those

with higher difficulties for optimization.

4 EXPERIMENT
4.1 Experimental Setup
4.1.1 Datasets. We conduct extensive experiments with the pro-

posed approach on several recommendation datasets.Movielens-
1M: the widely used user rating dataset collected from the movie-

lens website, containing 1,000,000 ratings from 6,000 users on 4,000

movies.Amazon-Beauty: the Amazon dataset is a series of datasets

containing reviews and product metadata, of which Amazon-Beauty

is a subset that covers rich user interactions with beauty products.

Steam: the Steam dataset is collected from an online video game

distribution platform, which encompasses extensive information

about users’ gaming activities, such as play hours, price, category,
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Algorithm 1 The curriculum scheduling strategy for training se-

quential recommenders.

1: input: user set U, historical sequences S, diffusion generated interac-

tions 𝑥

2: output: the learned sequential recommender 𝑓𝜏

3: function InteractAugment(𝑆𝑢 , 𝑥𝑢 , 𝐾, ratio)

4: 𝑛 = ratio ∗ |𝑆𝑢 |
5: for 𝑟 = 1, ..., 𝐾 do
6: 𝑆 ′𝑢,𝑟 = 𝑆𝑢

7: Replace 𝑆 ′𝑢,𝑟 with randomly sampled 𝑛 actions from 𝑥𝑢

8: Reorder 𝑆 ′𝑢,𝑟
9: return {𝑆 ′𝑢,𝑟 }𝐾𝑟=1

10: function Sim(𝑆𝑥 , 𝑆𝑦 )

11: x =𝑚𝑒𝑎𝑛 (Embed(𝑆𝑥 ) ) , y =𝑚𝑒𝑎𝑛 (Embed(𝑆𝑦 ) )
12: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠 (x, y)
13: return 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
14: for each user 𝑢𝑡ℎ in U do
15: {𝑆 ′𝑢,𝑟 }𝐾𝑟=1

← InteractAugment(𝑆𝑢 , 𝑥𝑢 , 𝐾, ratio)

16: {Sim𝑢,𝑟 }𝐾𝑟=1
← Sim(𝑆𝑢 , 𝑆

′
𝑢,𝑟 )

17: repeat
18: 𝑆 ← arg min

Sim𝑟

{𝑆 ′𝑟 }, {𝑆 ′𝑟 } .𝑝𝑜𝑝 (𝑆 )

19: 𝑓𝜏 ← 𝑆

20: Take gradient descent step on ∇L𝑎𝑢𝑔 in Eq.(10)

21: until converged

media rating, and developer details [15]. Yelp: the Yelp dataset is a

representative business dataset containing user reviews of different

restaurants, bars, etc.

The detailed descriptions and statistics of the datasets are shown

in Table 1. Typically, the reviews or ratings are treated as im-

plicit feedback, representing a user-item interaction, and organized

chronologically by their associated timestamps. Additionally, users

with fewer than five related actions are removed.

Table 1: Statistics of datasets. Avg. Length denotes the average
length of sequences.

Dataset # Users # Items # Actions

Avg.

Length

Sparsity

Movielens-1M 6,041 3,707 1,000,209 163.5 95.53%

Beauty 40,226 54,542 353,962 8.8 99.98%

Steam 281,428 13,044 3,485,022 12.4 99.90%

Yelp 30,431 20,033 1,301,869 12.1 99.79%

4.1.2 Evaluation Settings. The performance evaluation is conducted

by the widely used leave-one-out strategy [35, 39, 47], where the

most recent interaction is kept as the test data, the penultimate inter-

action is for validation, and all earlier interactions are for training.

We employ top-k Hit Ratio (HR@k), top-k Normalized Discounted

Cumulative Gain (NDCG@k) and Mean Reciprocal Rank (MRR) to

evaluate the recommendation performance, which are widely used

as common practice [15, 26, 44]. We report results on HR@{5, 10,

20} and NDCG@{5, 10}. To ensure consistent evaluation results, we

rank all candidate items for predicting the target item instead of

using the biased sampling, especially in cases where the number of

negative items is small [18].

4.1.3 Comparison Baselines. We compare Diff4Rec against a series

of representative baselines, including conventional recommenda-

tion models, state-of-the-art sequential models and recently pro-

posed novel approaches.

BPR [29] is a matrix factorization variant of the classic Bayesian

personalized ranking algorithm. NCF [10] is one of the most repre-

sentative collaborative filtering methods based on neural networks.

GRU4Rec [12] firstly employs the GRU network with ranking

based loss for sequential recommendation. Caser [36] employs

CNN in both horizontal and vertical way to model the user’s sub-

sequence behaviors. SASRec [15] utilizes self-attention [37] to

exploit the long-term mutual influence between historical inter-

actions. BERT4Rec [35] further designs a bidirectional Trans-

former with cloze task for sequential recommendation. S3Rec [47]
is a self-supervised learning method which devises four pretext

tasks for context-aware recommendation and then finetunes on the

next-item recommendation task. STOSA [6] is a recently proposed

uncertainty recommendation model that employs a Wasserstein

self-attention to consider collaborative transitivity in sequential

recommendation. ContraRec [39] is a contrastive learning based
method which leverages two signals named context-target contrast
and context-context contrast for sequential recommendation.

4.2 Overall Performance
We first present the overall comparison between Diff4Rec and base-

line models in Table 2, from which we can summarize the observa-

tions as follows.

Diff4Rec shows consistent superior performance over all the

baseline models across four datasets in terms of all metrics. In par-

ticular, compared with the different streams of baselines, Diff4Rec

achieves impressive improvements on each dataset. The improve-

ment is especially impressive on the sparse Beauty and Steam

datasets, where the relative improvement over the strongest base-

lines is in general over 20%. Such improvements suggest that 1)

Diff4Rec is capable of modeling intricate patterns of user-item inter-

actions by progressively learning from every denoising transition

step. 2) The diffusion model learned in the latent space effectively

fits various latent intentions of users. 3) The curriculum scheduling

strategy effectively augment the sequential behaviors with well

selected data and encourages the model to optimize within a larger

scope to yield better recommendation.

4.3 Ablation Studies
4.3.1 Comparison on Base SequentialModels. SinceDiff4Rec serves
as a general framework that is capable of being applied on differ-

ent sequential recommenders, we evaluate it by integrating three

representative techniques for sequential interaction modeling, in-

cluding RNN (GRU4Rec [12]), CNN (Caser [36]), and Transformer

(SASRec [15]), as the base sequence encoder. We conduct the com-

parison on three datasets and the experimental results are shown

in Table 3. The results demonstrate the steady and superior perfor-

mance of Diff4Rec upon multiple base sequential models, where

Diff4Rec achieve prominent improvements on all the datasets. The

consistent superiority reflects the effectiveness and flexibility of

our proposed framework.
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Table 2: Overall performance comparisons with baseline models on four datasets ( the best results are in BOLD, second in
underline). Improve. represents the relative improvements of Diff4Rec over the best baseline results.

Dataset Metric BPR NCF GRU4Rec Casar SASRec BERT4Rec S
3
Rec STOSA ContraRec Diff4Rec Improv.

ML-1M

HR@5 0.0155 0.0147 0.0792 0.0813 0.1047 0.1128 0.1154 0.0624 0.1269 0.1401 10.42%

HR@10 0.0327 0.0309 0.1573 0.1556 0.1775 0.1840 0.1921 0.1347 0.1980 0.2238 13.02%

HR@20 0.0649 0.0651 0.2374 0.2528 0.2807 0.3083 0.3199 0.2580 0.3423 0.3830 11.90%

NDCG@5 0.0086 0.0072 0.0458 0.0512 0.0598 0.0649 0.0640 0.0297 0.0725 0.0812 12.03%

NDCG@10 0.0140 0.0124 0.0667 0.0740 0.0824 0.1041 0.1077 0.0684 0.0987 0.1222 13.45%

MRR 0.0100 0.0090 0.0479 0.0673 0.0819 0.0984 0.1062 0.0681 0.0815 0.1202 13.18%

Beauty

HR@5 0.0121 0.0146 0.0152 0.0158 0.0325 0.0247 0.0307 0.0325 0.0385 0.0456 18.35%

HR@10 0.0277 0.0277 0.0268 0.0263 0.0633 0.0396 0.0574 0.0684 0.0753 0.0871 15.62%

HR@20 0.0496 0.0486 0.0413 0.0427 0.0971 0.0555 0.0933 0.0910 0.1099 0.1347 22.54%

NDCG@5 0.0063 0.0078 0.0094 0.0109 0.0204 0.0125 0.0203 0.0248 0.0221 0.0301 21.50%

NDCG@10 0.0119 0.0121 0.0137 0.0149 0.0303 0.0160 0.0290 0.0335 0.0358 0.0426 18.99%

MRR 0.0090 0.0104 0.0133 0.0113 0.0285 0.0158 0.0236 0.0292 0.0322 0.0368 14.42%

Steam

HR@5 0.0103 0.0111 0.0340 0.0396 0.0464 0.0478 0.0469 0.0481 0.0510 0.0575 12.67%

HR@10 0.0239 0.0258 0.0561 0.0680 0.0880 0.0851 0.0891 0.0844 0.1003 0.1132 12.90%

HR@20 0.0427 0.0465 0.0905 0.1011 0.1316 0.1240 0.1350 0.1426 0.1451 0.1608 10.79%

NDCG@5 0.0057 0.0066 0.0126 0.0227 0.0224 0.0284 0.0288 0.0272 0.0261 0.0321 11.32%

NDCG@10 0.0101 0.0102 0.0268 0.0315 0.0402 0.0429 0.0424 0.0421 0.0489 0.0541 10.70%

MRR 0.0092 0.0089 0.0213 0.0296 0.0350 0.0390 0.0387 0.0405 0.0434 0.0479 10.37%

Yelp

HR@5 0.0126 0.0137 0.0142 0.0139 0.0153 0.0158 0.0174 0.0182 0.0188 0.0198 5.58%

HR@10 0.0244 0.0256 0.0252 0.0247 0.0286 0.0291 0.0300 0.0395 0.0303 0.0411 4.06%

HR@20 0.0470 0.0449 0.0453 0.0451 0.0481 0.0488 0.0479 0.0523 0.0573 0.0595 3.90%

NDCG@5 0.0078 0.0074 0.0087 0.0083 0.0089 0.0094 0.0102 0.0114 0.0103 0.0125 9.25%

NDCG@10 0.0118 0.0109 0.0124 0.0122 0.0134 0.0146 0.0153 0.0157 0.0160 0.0171 6.83%

MRR 0.0089 0.0085 0.0101 0.0103 0.0119 0.0133 0.0141 0.0146 0.0144 0.0157 7.59%

Table 3: Performance comparison of Diff4Rec with different
base sequence encoders. NG@k is short for NDCG@k.

Method
Beauty Steam Yelp

HR@10 NG@10 HR@10 NG@10 HR@10 NG@10

GRU4Rec 0.0268 0.0137 0.0561 0.0268 0.0252 0.0124

+Diff4Rec 0.0372 0.0190 0.0691 0.0342 0.0336 0.0161

Caser 0.0263 0.0149 0.0680 0.0315 0.0247 0.0122

+Diff4Rec 0.0375 0.0214 0.0838 0.0443 0.0351 0.0161

SASRec 0.0633 0.0303 0.0880 0.0402 0.0286 0.0134

+Diff4Rec 0.0871 0.0426 0.1132 0.0541 0.0411 0.0171

Table 4: Ablation study on the curriculum scheduling strate-
gies of Diff4Rec. NG@k is short for NDCG@k.

Method

Beauty Steam Yelp

HR@10 NG@10 HR@10 NG@10 HR@10 NG@10

Base 0.0633 0.0303 0.0880 0.0402 0.0286 0.0134

Diff4Rec𝑤/𝑜 cur
0.0850 0.0417 0.1108 0.0524 0.0410 0.0165

Diff4Rec𝑤/cur
0.0871 0.0426 0.1132 0.0541 0.0411 0.0171

4.3.2 Curriculum Scheduling Strategies. To validate the effective-
ness of our proposed curriculum scheduler, we conduct ablation

studies on the curriculum scheduling strategies of Diff4Rec. Consis-

tently, we adopt SASRec [15] as the base sequential recommender,

and then trial two types of implementation of Diff4Rec:

• Diff4Rec𝑤/𝑜 cur
utilizes the interaction augmentation and objec-

tive augmentation to learn the sequential recommender while

not performing curriculum scheduling selection on the aug-

mented samples.

• Diff4Rec𝑤/cur
utilizes both curriculum scheduling and augmen-

tation, which is essentially our presented Diff4Rec.

We compare the performance of these implementations on three

datasets and the experimental results are shown in Table 4, from

which we can conclude 1) Diff4Rec𝑤/𝑜 cur
performs much better

over base model in all cases, which indicates the significance of

the data generation and two-level augmentation in Diff4Rec. 2)

Diff4Rec𝑤/cur
achieves best results in all cases, showing the ef-

ficacy and necessity of the designed curriculum scheduler. The

results reflect that the Diff4Rec properly selects out augmented

samples which are positive to augment sequence features, and the

interaction augmentation and objective augmentation performed by

the curriculum scheduler effectively enrich sparse interactions and

result in better recommendation.

5 CONCLUSION
In this paper, we study the problem of utilizing diffusion models

to conduct data augmentation for sequential recommendation. We

bravely propose the Diff4Rec framework, which consists of a dif-

fusion model to learn user-item interactions in the latent space

and a curriculum-guided augmentation strategy to schedule the

diffusion-generated samples. Experiments demonstrate that our

proposed Diff4Rec can effectively bring significant improvements

to the sequential recommendation. Utilizing diffusion models to en-

hance the sequential recommendation could be a promising future

research direction.
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